
Proximity Sensing for Contact Tracing
Sheshank Shankar∗, Ayush Chopra∗, Rishank Kanaparti∗, Myungsun Kang†, Abhishek Singh∗, Ramesh Raskar∗

PathCheck Foundation
Cambridge, MA, USA

∗{firstname.lastname}@pathcheck.org,
†sunny.myungsun.kang@gmail.com

Abstract—The TC4TL challenge is aimed towards designing an
effective proximity sensing algorithm that can accurately provide
exposure notifications. In this work, we describe our approach
to model sensor and other device level data to estimate distance
between the two phones. We also present our research and data
analysis on the TC4TL challenge dataset and discuss various
limitations associated with the task as well as dataset.

I. INTRODUCTION

As economies open up, digital contact tracing is emerging
as an important tool to help contain the spread of COVID-
19 by providing exposure notification to susceptible individ-
uals who came in close to infected individuals. There have
been several proposals varying across different modalities,
but Bluetooth is the most widely emerging technology for
digital contact tracing due to the technology’s aptness for
the task. However, there are well known limitations with the
effectiveness of Bluetooth , described in [7], [8]. We focus on
the task of proximity sensing, which is the key to facilitating
efficient contact tracing. Proximity sensing is concerned with
predicting if two individuals have been in ”close contact”
for ”too long” that may open the possibility of COVID-19
transmission. Specifically, we focus on the TC4TL challenge
recently introduced by NIST.

Current approaches to automated exposure notification rely
on using Bluetooth Low Energy (BLE) signals (or chirps) from
smartphones to detect if a person has been too close for too
long (TC4TL) to an infected individual. However, the received
signal strength indicator (RSSI) value of Bluetooth chirps sent
between phones is a very noisy estimator of the actual distance
between the phones and can be dramatically affected in real-
world conditions [5].

In this challenge, we’re trying to predict the distance using
the phone sensor data, particularly the received signal strength
indicator (RSSI) from the Bluetooth Low Energy (BLE) sig-
nals (or chirps) along with other factors which have been
seen to have an impact on these RSSI values. We train our
networks using the datasets provided by NIST and MITRE,
and the evaluation is derived from data sets being collected
by organizations around the world studying this problem.

We trained and tested many networks with varying internal
architectures, all with the singular goal of trying to obtain a
model which understands the subtle nuances of the phone’s
sensor data (and other factors), to try and predict an accurate
distance reading. We trained a few networks based on Deep
Learning (LSTM, ConvGRU, etc.) and also networks with

architecture based on Support Vector Machines and Decision
Trees. Of all the networks we tested on the NIST Test Data
(Subset of the full NIST dataset), the Temporal Conv1D
network gave us the most favourable results.

We also ran a few tests and projections (Ablation studies,
Data analysis and Training and Dev set distribution dis-
crepancy) to try and get an idea of the practicality of this
problem along with its future implications. We’ve discussed
our observations and hypotheses in section V.

II. CHALLENGE DESCRIPTION

The basic task in the NIST TC4TL Challenge is estimating
the distance and time between two phones given a series
of RSSI values along with other phone sensor data. Current
approaches to automated exposure notification rely on using
Bluetooth Low Energy (BLE) signals (or chirps) from smart-
phones to detect if a person has been too close for too long
(TC4TL) to an infected individual. Some of the identified
factors affecting distance estimation from RSSI values are (1)
the number and time spread of observed chirps, (2) the carriage
position of the phones (i.e., hand, front pocket, back pocket,
etc), (3) bodies and barriers between phones, and (4) multi-
path signals from surfaces (e.g., indoor vs outdoor). To better
characterize the effectiveness of range and time estimation
using the BLE signal, the dataset collects Bluetooth chirp data
as well as other phone sensor data (e.g., accelerometer and
gyroscope) between various types of phones with simulated
real-world variability. The dataset is divided into chunks of
4-sec device interactions (sender/receiver) with corresponding
readings for each sensor.

For ease of analysis, the current version of the challenge
restricts focus to estimation of the range (distance) and not
the time duration.

The initial experiments were conducted on a subset of the
PACT dataset for training the model. However we were soon
asked to train the model from the MITRE dataset to prevent
overfitting or underfitting.

III. METHODOLOGY

Bluetooth and other mobile sensor data tend to be extremely
noisy, therefore our main strategy was to try and exploit the
temporal characteristics of the dataset.



Fig. 1: Distribution of # of Sensor Reading Counts

A. Data Processing

We model the task as a time series task and break-down the
dataset into 150 timesteps for each 4-sec chunk. The number
of timesteps per interval is chosen to minimize the need for
oversampling or under-sampling datapoints for each file to
mitigate noise.

We chose 150 timesteps as the ideal number of timesteps
per 4 second interval by calculating the mean of the number
of timesteps throughout the entire dataset.

Every time-step is represented by a normalized fixed-length
feature vector representing the most recent values for each
sensor. In addition, the metadata of the experiment (TXDevice,
RXDevice, TXPower, etc.) is one-hot encoded and concate-
nated to each time-step’s vector. For the models that do not
use a time series input, all readings are concatenated into a
single feature vector for each 4 second interval.

We have also tried using mix-up data augmentation to in-
crease the size of the training data, however, it did not provide
a significant performance increase. We use the entire MITRE
train set training, however, we did try creating an optimal
subset by selecting only the k nearest train set neighbors of
each point in the NIST development set.

B. Model Architecture

1) Deep Learning based Models:
• LSTM: Using the time-series input format, we’ve im-

plemented an LSTM network and experimented with
multiple layers, varying hidden sizes.

• ConvGRU: The ConvGRU is a GRU with Conv1d reset,
update, and output gates. Using the time-series input
format, we’ve implemented an ConvGRU network and
experimented with multiple layers, varying hidden sizes
and kernel sizes. We have also experimented with adding
fully connected layers after the ConvGRU.

• Conv1d: We drew similarity of our learning task to
that of what was tackled by Google’s Wavenet. Wavenet
leveraged 1D convolutional neural net for predicting the
sequential audio signal. Inspired by this approach, we’ve
implemented three distinct variations of 1D convolutional
neural net, differing in ways to regularize the neural net:

1D CNN + Dropout, 1D CNN + Dropout + Maxpool,
1D CNN + Dropout + Dilation. In addition, we’ve
experimented with hyper parameters, such as number of
epochs, batch size, weight decay and learning rates.

• Feed Forward: Using the concatenated time-step input
format, we’ve implemented a feed forward neural net-
work. We experimented with multiple layers, varying
percentages of dropout, and different activation functions.

2) Support Vector Machines: Using the concatenated time-
step input format, we’ve implemented variations of the support
vector machine [3], specifically, Nu-Support Vector Classifi-
cation and C-Support Vector Classification.

3) Decision Tree based Models: Using the concatenated
time-step input format, we’ve implemented XGBoost [2] and
Random Forest Classification [1].

IV. RESULTS

All experiments were run on a Intel(R) Xeon(R) CPU E5-
2650 v4 @ 2.20GHz server with 528 GB RAM, 48 cores, and
on a single GPU. As can be seen in the nDCF results table
[I], the temporal Conv1D network has the lowest nDCF out
of all models trained on the MITRE train set.

The XGBoost and SVM based models would take too much
time/memory to train on the full train set, so we present results
on partially trained networks. These partially trained networks
tend to completely overfit (over 99% accuracy) on the training
data. The other model architectures that are trained on the
complete MITRE dataset, complete within 3 hours.

All experiments are optimized using the Adam optimizer
[6]. The temporal networks were built using PyTorch, whereas
the decision tree and Support Vector Machine [3] based
models were implemented with scikit-learn [9]. In the results
presented, we do not use mix-up data augmentation [10] or
the k nearest neighbors [4] method.

V. ANALYSIS

In this work we analyze the feasibility of the problem
by investigating the data distribution and different modalities
present in the data and how they affect the overall results and
outcomes.

a) Ablation studies: For ablation studies, we train the
model in variety of input data streams with each data stream
referring to only feeding a subset of input to a given model.
This way, we try to estimate the role of different types of
data and which sensors could be useful for the TC4TL task
described previously. At the time of writing this report, our
ablation study is not completely exhaustive, hence we share
only a limited number of findings. Using our existing typical
training scheme as described in the section III, we exclude
some of the sensors from the input pipeline and train on the
rest of the data. This requires minimal adjustment in the first
layer of the neural network to accommodate varying sized
input feature vector.

We perform the first set of experiments by excluding device
level information such as TXDevice, RXDevice, TXPower,
RxPower, Device carriage, and activity. We do not observe



Network Description Train Set Train % Epochs Batch Size 1.2m FINE 1.8m FINE 3m FINE 1.8m COARSE
GRU NIST dev 90.0 200 100 0.65 0.13 0.28 0.08
ConvGRU NIST dev 100.0 200 100 0.37 0.04 0.23 0.02
ConvGRU MITRE 100.0 500 4000 1.07 1.0 0.98 1.05
LSTM MITRE 100.0 40 100 1.0 1.08 0.93 0.97
GRU MITRE 100.0 40 100 1.02 0.99 0.93 0.97
Feed Forward MITRE 100 100 500 0.71 0.79 0.85 0.75
Temporal Conv1D MITRE 100.0 100 50 0.62 0.61 0.59 0.53
C-SVC MITRE 1.0 - 100 1.01 0.97 0.97 1.01
Nu-SVC MITRE 1.0 - 100 0.82 0.8 0.78 0.69
XGBoost MITRE 2.0 - 100 1.0 1.04 1.03 1.04
Random Forest MITRE 100.0 - 100 1.0 1.05 1.02 1.1

TABLE I: NDCF RESULTS ON THE DEV DATASET FOR THE DIFFERENT MODELS.

Network Description Train Set Prediction Time
GRU NIST dev 0.02
ConvGRU NIST dev 0.02
ConvGRU MITRE 0.02
LSTM MITRE 0.02
GRU MITRE 0.02
Feed Forward MITRE 0.01
Temporal Conv1D MITRE TBD
C-SVC MITRE 0.4
Nu-SVC MITRE 0.4
XGBoost MITRE 0.01
Random Forest MITRE 0.01

TABLE II: WALL CLOCK TIME RESULTS FOR ALL OF OUR EXPERI-
MENTS. EXPERIMENTS RAN ON INTEL(R) XEON(R) CPU E5-2650
V4 @ 2.20GHZ SERVER WITH 528 GB RAM, 48 CORES, AND ON
A SINGLE GPU.

any significant performance improvement with including or
excluding the device level data with performance being around
35% on the dev set. However, we found the training to be
more unstable when we included this device level information
and more susceptible to overfitting on two classes instead of
uniformly training across all of the four classes.

In the next set of experiments, we try training our model on
different combinations of sensors and evaluate its performance
on the dev set. As there could be a large number of combi-
nations to try out, we only try the combinations which make
sense from the physics based modeling view of the dataset. In
the first experiment, we train the model just with the bluetooth
readings given in the dataset, excluding all other sensor data.
The performance does not reduce significantly even with the
bluetooth data but it does seem to be increasing the divergence
in the final training and testing accuracy, indicating higher
susceptibility to overfitting. In the next experiment, we add
up more sensors which make intuitive sense for the forward
modeling of the data recorded by bluetooth, like gyroscope
(captures orientation of bluetooth antenna), accelerometer
(captures relative linear motion) and magnetometer (captures
the variance in the magnetic aberration in the environment over
the time domain). Across all of the ablation studies, we get best
performance on test as well as training set with this particular
combination. We do try including and excluding other sensory
input also like altitude, attitude, heading and etc.

b) Data analysis: We perform few low dimensional
projections of the dataset to understand if there are any

underlying clusters in the feature vectors or their components
which capture the dataset decision boundary with respect to
the respective target class. Figure 2 and Figure 3 show the
principal component analysis for the two distributions, training
and dev respectively. It can be observed that training data
clusters are packed heavily with no clear decision boundary
for any two labels. However, there can be a higher dimensional
embedding which can have separating hyperplanes across the
classes.

c) Training and Dev set distribution discrepancy: While
the initial training and dev distribution was provided by the
NIST team, the finalized training dataset was provided by the
MITRE group which differed in several ways from the dev and
the testing set provided by the NIST group. Another visible
and significant difference in the two distribution is around the
variety of devices used by the training dataset compared to
the dev set. The dev dataset uses roughly 5 extra iPhone
devices for the measurement compared to the training set
which prevents any data driven model to capture invariances
in the signal arising from the missing devices.

Another significant challenge we encounter across all of
the model training and experiments, is around the lack of
generalization of the models trained on training dataset. The
training of models on dev set and evaluation on test set
resulted in near perfect accuracies indicating certain amount
of overfitting. At the same time training on the training
dataset and evaluation on dev set indicated a level of result
slightly better than the random guess over the classes. This
clearly indicates that the training distribution does not lead to
sufficient generalization. Therefore to assess the efficacy of
the dev set, we also try training on dev set and evaluation on
the training dataset, which also does not yield any significant
improvement in generalization.

Informed by these results, we try to estimate the gap in the
distribution and also see how much of the two distributions
are skewed from each other. One of the clear inconsistency
between the two distributions is around the distances as
measured by `2 norm between any given two feature vectors.
We measure the nearest neighbour for all the points in the dev
dataset and with respect to the points in the training dataset.
We find a significant number of all the closest points in training
and dev set to be having a different class label. Then we
perform the nearest neighbour based on same label and train



Fig. 2: PCA Visualization of MITRE dataset
Fig. 3: PCA Visualization of NIST Development
dataset

on the resulting training dataset with only 2 closest training
points for each and every point in the dev set. The performance
on this new training subset is not significantly different than
the full training dataset. Furthermore, we measure the inter-
class distances between the two distributions and find that
nearest-neighbor between two datasets have an average of `2
distance of 24 while the neighboring points’ classes are not
same, however, if we find the closest `2 distance between
two points with same class between training and dev set,
then the average `2 distance is somewhere between 200.
This supports our previously made argument about the data
discrepency and distributions being not similar enough to
capture any relevant and generalizable information. However,
a more thorough analysis would be needed to confirm this
argument in a statistical manner due to other possibilities like
existence of highly non-linear manifolds which could fit both
the distributions sufficiently.

VI. CONCLUSION AND FUTURE WORK

In this work we present our approach for solving the
TC4TL challenge and corresponding results. We also report
our findings and analysis of the task as well as dataset. The
task was marked by several challenges due to the noise in the
data distribution and poor transferability of training data over
the validation data. Therefore, we believe a proper physics
based model which could capture appropriate invariances will
be a good step towards solving the task. We also consider
interpretable modeling and extensive breakdown of different
sensor based data as part of the future work.

REFERENCES

[1] Leo Breiman. Random forests, 2001.
[2] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting

system, 2016.

[3] Corinna Cortes and Vladimir Vapnik. Support-vector networks, 1995.
[4] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE

Trans. Inf. Theor., 13(1):21–27, September 2006.
[5] Gary F. Hatke1, Monica Montanari, Swaroop Appadwedula, Michael

Wentz, John Meklenburg, Louise Ivers, Jennifer Watson, and Paul Fiore.
Using bluetooth low energy (ble) signal strength estimation to facilitate
contacttracing forcovid-19, 2020.

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2014. cite arxiv:1412.6980Comment: Published as a
conference paper at the 3rd International Conference for Learning
Representations, San Diego, 2015.

[7] Douglas J. Leith and Stephen Farrell. Coronavirus contact tracing:
Evaluating the potential of using bluetooth received signal strength for
proximity detection, 2020.

[8] Douglas J. Leith and Stephen Farrell. Measurement-based evaluation
of google/apple exposure notification api for proximity detection in a
commuter bus, 2020.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[10] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-
Paz. mixup: Beyond empirical risk minimization, 2017.


